EXTERNAL RADIATION

The specific gamma ray constant for Tc 99m is 0.78 R/mCi-hr at 1 cm from the source. The half value layer for Tc 99m is 0.017 cm of lead for a range of 1 MeV. The first half value layer is 0.017 cm of lead. A range of 1 MeV. The first half value layer is 0.017 cm of lead. A range of 1 MeV. The first half value layer is 0.017 cm of lead. A range of 1 MeV. The first half value layer is 0.017 cm of lead. A range of 1 MeV. The first half value layer is 0.017 cm of lead. A range of 1 MeV. The first half value layer is 0.017 cm of lead.

Table 2. Physical Decay Chart: Tc 99m half-life 6.02 hours

<table>
<thead>
<tr>
<th>Fraction Remaining</th>
<th>Hours</th>
<th>Log (base 10) Fraction Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>0.631</td>
<td>6</td>
<td>0.580</td>
</tr>
<tr>
<td>0.406</td>
<td>12</td>
<td>0.316</td>
</tr>
<tr>
<td>0.251</td>
<td>24</td>
<td>0.16</td>
</tr>
</tbody>
</table>

The number of particles in any dose and volume to be administered by percutaneous transtubal injection. The suggested intraperitoneal dosage range used in the treatment of hepatic and vascular shunts is 37 to 148 megabecquerels (1 to 4 millicuries) per kilogram of body weight. The suggested intraperitoneal dosage range used in the treatment of hepatic and vascular shunts is 37 to 148 megabecquerels (1 to 4 millicuries) per kilogram of body weight. The suggested intraperitoneal dosage range used in the treatment of hepatic and vascular shunts is 37 to 148 megabecquerels (1 to 4 millicuries) per kilogram of body weight. The suggested intraperitoneal dosage range used in the treatment of hepatic and vascular shunts is 37 to 148 megabecquerels (1 to 4 millicuries) per kilogram of body weight. The suggested intraperitoneal dosage range used in the treatment of hepatic and vascular shunts is 37 to 148 megabecquerels (1 to 4 millicuries) per kilogram of body weight.
V_T = volume of solution added to reaction vial

If:
The estimated absorbed radiation doses than one-half hour after administration will yield poor results.

Due to high kidney uptake, imaging later that the patient be positioned under the imaging apparatus.

Contents of the vial by gentle inversion just prior to withdrawing calibration system immediately prior to administration. Mix the radiopharmaceutical. The patient should be positioned under the imaging apparatus.

Parenteral drug products should be visually inspected for indicated in Table 5.

Not less than the minimum dose of 7.4 MBq (200 µCi) of technetium Tc 99m albumin aggregated. In PEDIATRIC patients, the suggested intravenous dose to be administered dose is 1.11 MBq per kilogram (30 µCi/kg), except in newborns, maximum recommended dose for pediatric patients from newborn to adults.

80°C (36-46°F) in a suitable lead shield and discard after 6 hours. After labeling with Technetium Tc 99m, store the solution at 2 to 8°C (36-46°F) when not in use and discarded after 6 hours.

The preparation contains no bacteriostatic preservative.

The vial should also be retained during its life in the reaction vial shield with cap in place.

(kg)

For the newborn, 1 year-old, and adult, the “S” values calculated from the preliminary phantoms of ORNL were effective half-time of 3 hours for the open shunt and 6.02 hours for the closed shunt and an even distribution of the radiopharmaceutical in the parenteral form with no biological clearance.

Calculations for the absorbed radiation dose are based upon an effective half-life of 6.02 hours for the closed shunt and 3 hours for the open shunt and an even distribution of the radiopharmaceutical in the parenteral form with no biological clearance.

Absorbed Dose per Unit Cumulated Radiation Exposure

Absorbed Dose per Milligram of Technetium Tc 99m

Table 4. Absorbed Radiation Doses

Table 5. Absorbed Radiation Doses

Table 6. Pediatirc Radiation Dose from Tc 99m MAA for Lung Imaging

<table>
<thead>
<tr>
<th>Organ</th>
<th>Activity (MBq)</th>
<th>Dose (mGy)</th>
<th>Rads (mR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>0.44</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td>1.23</td>
<td>0.22</td>
<td>0.036</td>
</tr>
<tr>
<td>Total Body</td>
<td>1.68</td>
<td>0.26</td>
<td>0.048</td>
</tr>
<tr>
<td>Parental Cavity</td>
<td>0.18</td>
<td>0.036</td>
<td>0.006</td>
</tr>
<tr>
<td>Bladder Wall</td>
<td>1.68</td>
<td>0.26</td>
<td>0.048</td>
</tr>
<tr>
<td>Organs in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumoral Field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the newborn, 1 year-old, and adult, the “S” values calculated from the preliminary phantoms of ORNL were effective half-time of 3 hours for the open shunt and 6.02 hours for the closed shunt and an even distribution of the radiopharmaceutical in the parenteral form with no biological clearance.

Calculations for the absorbed radiation dose are based upon an effective half-life of 6.02 hours for the open shunt and 3 hours for the closed shunt and an even distribution of the radiopharmaceutical in the parenteral form with no biological clearance.

DIRECTIONS FOR PREPARATION

Use aseptic technique throughout and take precautions to ensure that the suspension is free of foreign matter before proceeding. Do not administer if foreign particulate are found in the preparation. To ensure that the suspension is free of foreign matter before proceeding. Do not administer if foreign particulate are found in the preparation.

Before reconstituting a vial, it should be inspected for cracks and/or a melt plug or any other indication that the integrity of the vacuum seal has been lost.

To prepare Technetium Tc 99m Albumin Aggregated Injection:

1. Remove the protective disc from a reaction vial and swab the rubber stopper with an alcohol swab or a suitable bacteriostatic agent to absorb the surface.

2. Place the vial in a suitable lead shield which has a fitted cap. Obtain 2-8 mL of a sterile pyrogen-free Sodium Pertechnete Tc 99m Injection using a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe.

3. Using a shielded syringe, add the Sodium Pertechnete Tc 99m Injection to the vial.

4. Place the lead cap on the vial shield and mix the contents of the shield vial by repeated gentle inversion until all the vial is suspended. Avoid formation of foam. Using proper shielding, the vial should be visually inspected to ensure that the suspension is free of foreign matter before proceeding.

5. After labeling with Technetium Tc 99m, store the solution at 2 to 8°C (36-46°F) when not in use and discarded after 6 hours.

DIRECTIONS FOR PREPARATION

Use aseptic technique throughout and take precautions to minimize exposure of the radiopharmaceutical. Waterproof gloves should be worn during the preparation procedure.

Before reconstituting a vial, it should be inspected for cracks and/or a melt plug or any other indication that the integrity of the vacuum seal has been lost.

To prepare Technetium Tc 99m Albumin Aggregated Injection:

1. Remove the protective disc from a reaction vial and swab the rubber stopper with an alcohol swab or a suitable bacteriostatic agent to absorb the surface.

2. Place the vial in a suitable lead shield which has a fitted cap. Obtain 2-8 mL of a sterile pyrogen-free Sodium Pertechnete Tc 99m Injection using a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe. Forget the total administered volume and the maximum amount appropriate is 2.0 mL of Sodium Pertechnete Tc 99m Injection in a syringe.

3. Using a shielded syringe, add the Sodium Pertechnete Tc 99m Injection to the vial.

4. Place the lead cap on the vial shield and mix the contents of the shield vial by repeated gentle inversion until all the vial is suspended. Avoid formation of foam. Using proper shielding, the vial should be visually inspected to ensure that the suspension is free of foreign matter before proceeding. Do not administer if foreign particulate are found in the preparation.

5. After labeling with Technetium Tc 99m, store the solution at 2 to 8°C (36-46°F) when not in use and discarded after 6 hours.

DIRECTIONS FOR PREPARATION

Use aseptic technique throughout and take precautions to minimize exposure of the radiopharmaceutical. Waterproof gloves should be worn during the preparation procedure.

Before reconstituting a vial, it should be inspected for cracks and/or a melt plug or any other indication that the integrity of the vacuum seal has been lost.

To prepare Technetium Tc 99m Albumin Aggregated Injection: